LEARNING TO SEE ANALOGIES:
A CONNECTIONIST EXPLORATION

Douglas S. Blank

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
for the joint degree of Doctor of Philosophy
in the Departments of Computer Science
and
Cognitive Science
Indiana University

December 1997
Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements of the degree of Doctor of Philosophy.

Doctoral Committee

Michael Gasser, Ph.D.
(Principal Advisor)

Robert Goldstone, Ph.D.

Robert F. Port, Ph.D.

Dirk Van Gucht, Ph.D.

Bloomington, Indiana
December 1997.

iii
For Laura and Thaddeus.
Abstract

This dissertation explores the integration of learning and analogy-making through the development of a computer program, called Analogator, that learns to make analogies by example. By “seeing” many different analogy problems, along with possible solutions, Analogator gradually develops an ability to make new analogies. That is, it learns to make analogies by analogy. This approach stands in contrast to most existing research on analogy-making, in which typically the a priori existence of analogical mechanisms within a model is assumed.

The present research extends standard connectionist methodologies by developing a specialized associative training procedure for a recurrent network architecture. The network is trained to divide input scenes (or situations) into appropriate figure and
ground components. Seeing one scene in terms of a particular figure and ground provides the context for seeing another in an analogous fashion. After training, the model is able to make new analogies between novel situations.

Analogator has much in common with lower-level perceptual models of categorization and recognition; it thus serves as a unifying framework encompassing both high-level analogical learning and low-level perception. This approach is compared and contrasted with other computational models of analogy-making. The model’s training and generalization performance is examined, and limitations are discussed.
Acknowledgments

I would like to thank first my advisor, Mike Gasser. In 1990 I came to him with barely an idea and convinced him that it was worth pursuing. We began to meet regularly to discuss the issues surrounding this basic idea. However, after a couple of years, I seemed no closer to a thesis than on the first day. It must have seemed like I was going in circles, yet he patiently listened and suggested. Only years later did I realize that I wasn’t going in circles, but rather was actually traveling a slow spiral gravitating toward the thesis described in this dissertation. I am very happy with the way that the project turned out; if the path that I took were the only way to get here then I would surely do it again. For this I owe Mike.
The rest of my committee has, over the years, also been of great inspiration to me. Bob Port, one of the founding fathers of cognitive science at Indiana University, introduced me to many of the topics that have affected my view of minds. Dirk van Gucht was my first instructor as I entered grad school and has done an excellent job of showing me what it is like to be a first-class researcher and teacher. Rob Goldstone has help show me what it is like to be an excellent cognitive scientist.

During my stay in the computer science department and cognitive science program, I have had the opportunity of working with many teachers and researchers that have inspired me. They were David Leake, Ming Kao, Gregory Rawlins, John Kruschke, Jonathan Mills, Lorilee Sadler, and Suzanne Menzel. Doug Hofstadter has, in many ways, paved the road for this dissertation; to say that my life would be very different if I hadn’t met him would be a very large understatement.

Before life in grad school, there were many people that helped shape my young mind. They were Nick Toth, Bob Meier, and Bonnie Kendall, all inspiring people in the Department of Anthropology at Indiana.

The people in the AI Lab (a.k.a., CRANIUM) were always (and I do mean always) there for interesting conversation and assistance. They were Sven Anderson, Fred Cummins, Doug Eck, Susan Fox, Paul Kienzle, Andy Kinley, Devin McAuley, John Nienart, Pantelis Papadapolous, Cathy Rogers, Raja Sooriamurthi, Jung Suh, Keiichi Tajima, and Dave Wilson.

My friends were always supportive – either with words, a frisbee, a beer, or a guitar. They were Eric Jeschke, Amy Baum, Judy Augsburger, Ethan Goffman, John Blair, Michael Chui, Charles Daffinger, Liane Gabora, Eric Wernert, Bill Dueber, Brian Ridgely, Terry Jones, and Rupa Das. Some other friends had to work overtime to help me
keep my sanity. They were Amy Barley, Dave Chalmers, Jim Marshall, Gary McGraw, Lisa Meeden, Naz Miller, Chris-man Pickenpaugh, Kirsten Pickenpaugh, and Jon Rossie.

Many administrative friends helped me from the computer science and cognitive science staffs. They were Ann O. Kamman, Grace Armour, Julia Fisher, Pam Larson, Karen Laughlin, and Linda McCloskey. The Indiana University Department of Computer Science has one of the best systems staffs that one could imagine. I would especially like to thank Rob Henderson, Steve Kinzler, and Dave “dxp” Plaisier.

Since I left Bloomington, an entirely different computer science department has helped me; everyone at the University of Arkansas has been very supportive. I would like to especially thank Oliver Ross, Dennis Brewer, Antonio Badia, Hal Berghel, and George Holmes.

Over the years, my family has been far too supportive; if this had taken another decade or two they would have still cheered for me all the while. They are Scott Blank, Norma Blank, David Blank, Julia Blank, Laura Blank, and the rest of the Blanks, Blankenships, Baxters, and Bamfords.

Also, I would like to thank Yoshiro Miyata and Andreas Stolcke for their work on the clustering software that I used extensively in my analysis.

Finally, and most of all, I would like to thank my wife, Laura Blankenship, and my son, Thaddeus, for their love, support, and patience.
List of Figures

FIGURE 1-1. A classic example of the battle between figure and ground segmentation. Is this a picture of two faces or a vase? ... 6

FIGURE 1-2. Sample #1: A geometric-spatial analogy problem. Which object in the target is the “same” as the object being pointed to in the source? (After French, 1992). 7

FIGURE 1-3. Sample #2: A variation of Sample #1. In this version, the black triangle has been changed into a black square. Notice how this change affects the choice of an analogous object ... 8

FIGURE 1-4. Sample #3: Position of objects in a scene may effect perceived similarity. 9

FIGURE 1-5. Sample #4: Creating on-the-fly categories allows objects to be grouped together in substructures .. 10

FIGURE 1-6. Sample #5: A letter-part analogy. Shown are two letter a’s. Considering the selected part in the source scene (pointed to and gray), what is the analogous part in the target scene? .. 11

FIGURE 1-7. Sample #6: A similar letter-part analogy to that of Figure 1-6. 12

FIGURE 1-8. Comparison of two a’s. Although Letter #1 and Letter #2 have many pixels in common, the parts that those pixels compose are different. A model based purely on “pixel statistics” would have trouble correctly identify the different letter-parts. 13

FIGURE 1-9. Sample #6: Two isomorphic families. Who, in the lower family, can be seen as analogous to Margaret? (After Hinton, 1986). ... 14

FIGURE 2-1. Abstract representations for comparing a bird with an airplane. 30

FIGURE 3-1. A 3-layer, feed-forward network .. 35

FIGURE 3-2. An idealized neuron. Activations come in from units 1 through n, and are propagated to unit q. .. 36
Figure 3-3. A simple logistic function. The x-axis shows the inputs into the function, and the y-axis the resulting squashed value between 0 and 1. .. 38
Figure 3-4. Principal Component Analysis. The dotted line accounts for almost all of the variability between the points... 46
Figure 3-5. A Simple Recurrent Network (SRN). .. 47
Figure 3-6. Two methods of depicting a tensor product role/filler binding.. 50
Figure 3-7. Tensor product representation of “Mary gave the book to John.” .. 51
Figure 4-1. An Analogator problem with reference labels. .. 54
Figure 4-2. Two ways of explicitly representing the target scene of Figure 4-1. If the target scene were perceived as that of Target #1, then the analogous object would be the white object (F). If the target scene were perceived as Target #2, then the analogous object would be the square object (D). .. 55
Figure 4-3. A sample Analogator scene. ... 58
Figure 4-4. The creation of the rank-2 tensor. The resulting representation consists of a 7 x 7 x 5 matrix of values .. 60
Figure 4-5. Using the tensor product method to represent attributes. The bottom row reflects a representation encoding all of the objects in their appropriate position................................. 62
Figure 4-6. A sample Analogator problem from the geometric-spatial domain. ... 64
Figure 4-7. The recurrent figure-ground associating procedure. ... 65
Figure 4-8. The recurrent figure-ground training procedure using iconic representations.
Steps 1B and 2B require that the network produce on the output layer the locations of the figure and ground objects of the source and target scenes, respectively. 66
Figure 5-1. A letter-part analogy. What in the target scene is analogous to the shaded portion of the source?... 70
Figure 5-2. The Letter Spirit grid (after McGraw, 1995), and a pixel-based representation. 71
Figure 5-3. The design of a letter ‘A’, and its figure and ground components. ... 73
Figure 5-4. The steps of the recurrent figure-ground training procedure, revisited. 75
Figure 5-5. A format for examining letter-part analogies. In this version, the analogy can be thought of in this form: “if \(\Box \) goes to \(\setminus \), what does \(\textcircled{\text{}} \) go to?” The network produces the bottom right-hand matrix; the others are inputs to the network. ... 76
Figure 5-6. The training of an Analogator letter-part network.. 78
Figure 5-7. A glimpse of some activation values. Top row is Step #1; bottom is Step #2. Columns from left to right are: 1) hidden layer activations, 2) figure desired outputs, 3) actual.
FIGURE 5-8. Feed-forward network with figure and ground parts as desired outputs. S = source, F = figure, G = ground, T = target, H = hidden layer. .. 81

FIGURE 5-9. The ten test letters. The letter ‘I’ connotes the brim portion, ‘O’ the body, and ‘B’ both. On ten trials, the brim was defined to be the figure, and the everything else the ground. On another ten trials, the body was defined to be the figure. .. 82

FIGURE 5-10. Three tests of Analogator’s generalization ability from Experiment #1a. 84

FIGURE 5-11. Pixels used in the gridfont tests. The top and bottom 4 rows were not used in the experiments. .. 85

FIGURE 5-12. A poor performance in generalization ability. Shown here are all of the inputs and output for both steps of the training procedure. The outputs run across the top, while inputs run across the bottom. The left four matrixes represent step 1, while the right four represent step 2. The output of the source letter was perfect; however, the output of the target letter was somewhat scrambled. .. 86

FIGURE 5-13. A type of error that would have been impossible in earlier experiments. This error was made by a network from Experiment #1c. Notice that there is confusion between the brim and a similar piece of the body. The error does indicate abstractions were made regardless of position on the grid. .. 89

FIGURE 5-14. Principal Component Analysis of the hidden layer activations of step 1, Experiment #1a. The activations have been marked according to the type of part selected as figure. Notice that principal component #1 alone allows easy separation of the two types. .. 90

FIGURE 5-15. The recurrent figure-ground associating training procedure for the geometric-spatial analogy domain. The 7 x 7 grid is shown here as 4 x 4 for clarity. 92

FIGURE 5-16. Two samples from Experiment #2a. Set #1 has been rotated 1 position clockwise. Set #2 has been rotated 3 positions clockwise. The gray hands indicate the correct answer to the analogy problem. ... 93

FIGURE 5-17. Two sample problems from Experiment #2b. The source scene from Set #3 shows an object selected which differs from the other two source objects on the dimension of shape. Therefore, the correct answer for Set #3 is the black square of the target (pointed to by the gray hand), as it also differs on the dimension of shape from the other two objects. Set #4 shows an analogy based on a difference on the dimension of color.. 95
FIGURE 5-18. SAMPLE FROM EXPERIMENT #2c. SET #5 SHOWS A TARGET THAT IS A VERTICAL-MIRROR IMAGE OF THE SOURCE. HOWEVER, THIS FACT IS NOT NEEDED AS IT IS EASY TO SEE THE ANALOGOUS SHAPE IS THE ONE THAT DIFFERS FROM THE OTHER TWO. SET #6 IS NOT SO STRAIGHTFORWARD. THE SELECTED SHAPE IS ONE OF TWO SQUARES. TO PICK THE ANALOGOUS CIRCLE, ONE MUST REALIZE THAT THIS PROBLEM INVOLVES A HORIZONTAL FLIP... 97

FIGURE 5-19. TWO ISOMORPHIC LINEAGES USED IN HINTON’S FAMILY TREE TASK (1990). 100

FIGURE 5-20. HINTON’S SIMPLE NETWORK FOR LEARNING FAMILY RELATIONSHIPS. SHOWN HERE IS THE FACT THAT SOPHIA’S MOTHER IS LUCIA ... 101

FIGURE 5-21. THE STEPS OF THE RECURRENT FIGURE-GROUND TRAINING PROCEDURE, REVISITED. 102

FIGURE 5-22. HIDDEN LAYER ACTIVATION PCA FOR ANALOGATOR’S FAMILY TREE PROBLEM. SHOWN HERE ARE THE HIDDEN LAYER ACTIVATIONS FOR ALL RELATIONS IN STEP 1 OF EXPERIMENT #3A. 105

FIGURE 5-23. THE 11 RELATIONSHIPS BETWEEN THE 6 AFRICAN PEOPLE. DETAILS PROVIDED IN APPENDIX C. .. 106

FIGURE 6-1. A PROBLEM FOR SME. ... 116

FIGURE 6-2. THE PROBLEM FROM FIGURE 6-1 BOILED DOWN TO ITS GISTS. THE DASHED LINES INDICATE A VALID MAPPING FROM SOURCE TO TARGET. ... 117

FIGURE 6-3. AN EXAMPLE ACME NETWORK. THIS NETWORK DEPICTS ACME’S REPRESENTATION OF FIGURE 6-1. ACME ACTUALLY TAKES AS INPUT REPRESENTATIONS SIMILAR TO THOSE SHOWN IN FIGURE 6-2. IT THEN CONSTRUCTS A NETWORK SIMILAR TO THAT SHOWN HERE. NOT ALL LINKS ARE SHOWN. 120

FIGURE 6-4. A SAMPLE PROBLEM FROM HANDLER AND COOPER’S SMERF DOMAIN (1993)..................... 124

FIGURE 6-5. A SAMPLE PROBLEM FROM EVANS’ ANALOGY DOMAIN.. 130

List of Tables

Table 5-1. Training times of Analogator on letter-part analogies. A source-target training pair counts as one trial. A sweep through all source-target pairs is an epoch 77

Table 5-2. Comparison of training times between Analogator and standard feed-forward networks on the letter-part analogy problem. Analogator’s epoch counts have been doubled to make the comparison fair .. 80

Table 5-3. Comparison of generalization performance between Analogator and standard feed-forward networks on the letter-part analogies .. 83